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Abstract 

Accurately predicting heating energy 
consumption for buildings is crucial for optimizing 
communal heating planning. However, the lack of 
detailed building information hinders precise 
estimations necessary for city decarbonization 
and efficient use of local renewable or waste 
energy. To address this challenge, this study 
utilizes 3D geometries and open data of Berlin's 
half a million buildings to perform building-
specific simulations and trains AI-models to 
predict heating consumption. 

A physics library was developed using statistical 
data from 16 building types and 6 refurbishment 
scenarios, providing building model components 
with physical properties. Additionally, a usage 
library comprising 24 different usage types and a 
weather database spanning 13 recent years, and 
3 future climate scenarios for the next 8 decades 
were created. Simulations on a subset of Berlin's 
buildings were conducted using these libraries. 

To extend results city-wide, an Artificial Neural 
Network (ANN) was trained using input data and 
simulation outcomes. This approach replaces 
traditional simulation software, offering a more 
efficient alternative. An intuitive web-application 
with a fast AI surrogate model at its core allows 
individuals to access and modify results for their 
buildings as well as correcting values to reflect 
actual demands. Corrected data is incorporated 
into neural network training, improving accuracy 
for various climate scenarios and potential 
refurbishments. 

This iterative process not only streamlines 
communal heating planning in Berlin but also 
establishes a flexible framework for continuous 
improvement. This emphasizes the adaptability 
and scalability of our proposed methodology, 
contributing to enhanced predictions and a more 
efficient approach to city-wide heating planning. 

 

Introduction 

For decarbonization concepts of cities, 
communities and neighborhoods, a building-
specific database of the building’s properties and 
energy demands is essential. Since German 
legislators have passed a law on communal heat 
planning (Bundesregierung 2023), concerns on 
how to approach the obligations of the law are 
growing. A first step must be a thorough 
compilation of building data that represents the 
status quo. Often however, energy cadastres 
provide only block-level or 100m x 100m grid 
consumption data (Paardekooper, et al. 2018), 
(Dochev, Seller und Peters 2019), (Behörde für 
Stadtentwicklung und Wohnen, Stadt Hamburg 
2019). Yet, to undertake precise planning and to 
locally utilize renewable energies or waste heat 
from sources such as industry, data centers, or 
wastewater, building-specific data is 
indispensable. 

In addition to the current heating consumption of 
buildings, future scenarios for refurbishments and 
the impacts of climate change (Kahlenborn, et al. 
2021), such as increasingly mild winters or 
warmer summers, are crucial for long-term heat 
planning. Unfortunately, there is a scarcity of 
comprehensive and freely available information 
on buildings for those scenarios and in general in 
Germany. 

Consequently, in practice energy concepts for 
neighborhoods, districts, communities, or cities 
often rely on rough assumptions regarding 
heating and domestic hot water consumption. 
Typically, the demands are extrapolated based on 
the building's area and educated guesses of 
specific values. However, more accurate 
predictions are imperative for long-term and 
precise heat planning. 

Drawing from insights gained in a previous 
project, Open eQuarter (Nytsch-Geusen et al., 
2016) which utilized a GIS-based statistical 
approach to assess the specific energy demands 
of buildings in Berlin, this new method aims to 
further enhance accuracy and efficiency. To 
generate precise forecasts of the heating energy 
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consumption for tens of thousands of buildings 
and different refurbishment and climate 
scenarios in a short amount of time, a workflow 
has been developed that replaces physical-
based building-specific simulations with a 
prognosis model based on a neural network. This 
workflow has been applied to the city of Berlin. To 
enhance the energy demand prognosis of the 
neural network, users are provided with the 
opportunity to adjust building parameters in an 
iterative process. 

 

Simulations as training data 

To carry out simulations with the software 
SimStadt (Coors, et al. 2021) for most of Berlin's 
buildings at building level, several building-
specific datasets such as the cubature, the age 
and the type of use were compiled first. These 
attributes serve as key to merge further 
information from large statistical libraries for each 
individual building in the building-specific 
simulations: The 3D building models in CityGML 
format and the usage type of the building, which 
can be identified through ALKIS function 
numbers (Arbeitsgemeinschaft der 
Vermessungsverwaltungen der Länder der 
Bundesrepublik Deutschland (AdV) 2018), were 
merged. This information is provided by the State 
of Berlin through its Geoportal (Senatsverwaltung 
für Stadtentwicklung, Bauen und Wohnen Berlin 
2024). Some of the 3D building models contain 
parts of buildings such as underground garages 
or driveways. These were removed from the 
building data sets with specially designed filters 
to keep only data that is most relevant to heating 
consumption. In addition to the type of use, each 
individual building model was enriched with 
information on the age of the building. The 
building ages from a 1992/93 building age map 
and a monument map were used for this purpose. 
For all buildings whose building age was not 
covered by these maps, the mean building age of 
the city block from German census data was 
used for simplification. In many other cities in 
Germany, there is building-specific information 
on building ages, which means that applying the 
workflow to other areas may even eliminate the 
need for time-consuming evaluations of building 
age maps and data. 

Statistical data from IWU surveys were also used 
to describe the physical parameters of the 
envelope surfaces. One survey (IWU Institut für 
Wohnen und Umwelt 2016) was carried out for 
residential buildings and published in 2011. Here, 
the residential buildings were divided into five 
different residential building types and up to nine 
different construction age classes per residential 

building type. A second survey (IWU Institut für 
Wohnen und Umwelt 2021) on non-residential 
buildings was recently completed and published 
in 2021. The non-residential buildings were 
divided into eleven different usage types, each 
containing three different building age classes. 
The data surveys of residential and non-
residential buildings refer to buildings throughout 
Germany and, although only statistical data is 
provided, the data is currently the best source for 
physical parameters as it is classifying non-
residential buildings into 33 categories and was 
deducted from data of up to 800 buildings per 
category. 

The data collection and categorization were 
carried out in different ways for residential and 
non-residential buildings. For residential 
buildings, SimStadt provides a library in which the 
refurbishment categories were unrefurbished, so-
called "original" buildings; data collected by IWU 
from moderately refurbished buildings, labelled 
“medium” by SimStadt; as well as the data from 
advanced refurbished buildings which were 
labelled “advanced” by SimStadt, see Figure 1. 
There were also refurbishment scenarios where 
a building either only had a refurbished roof, 
refurbished windows, or walls. For all other parts 
of the building, it was assumed that they were still 
in their original or unrenovated condition. 

 

Figure 1 The six refurbishment scenarios used for 
building simulations in SimStadt with the highlighted 

refurbished components. 

These refurbishment labels for residential 
buildings were then also used for the non-
residential buildings. However, the data collected 
by IWU for the non-residential buildings was 
sorted differently in their survey: For every 
building category the mean average value and 
the standard deviations were determined. For 
simplification the category “medium” 
refurbishment was used for the mean average 
value. Furthermore, deviation indicating a worse 
refurbishment state was used for the “original” 
refurbishment category. The deviation indicating 
a better refurbishment state was used for the 
“advanced” category. In the example of a heat 
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transfer coefficient this would be the lower value. 
For parameters such as the average storey 
height, the mean average value was used, as it 
is assumed that a refurbishment will not change 
the storey height in most cases. 

In addition to the library of physical parameters, 
a usage library was created with 24 different 
building usage types. These 24 types of usage 
are made up of 22 different non-residential and 
only 2 residential building use profiles. The 
profiles for residential buildings are very similar, 
with only a distinction being made between 
apartment buildings and smaller houses, e.g. 
single-family houses. For each usage profile, 
data from usage profiles from DIN 18599 
(Deutsche Institut für Normung e.V. 2018) were 
used as a basis. The internal gains as well as 
occupancy conditions were derived from the DIN 
18599 profiles. Furthermore, for every building 
category there is an indirectly heated area ratio 
set so that an assumption is made for every 
building. Storeys that are underground are 
counted as cellars and those that are not high 
enough for living purposes are thus considered 
unheated areas. Unfortunately, no assumptions 
could be made regarding the zoning of non-
residential buildings, as the interior of the 
buildings is completely unknown due to the 
available LoD2 3D geometries. All buildings are 
therefore treated as single-zone models. The 
assignment of buildings to a usage profile in the 
library was done via the ALKIS building function 
number of each building. 

The building simulations were carried out with 
weather data for the past 13 years. Past years 
were simulated as these can be compared with 
real consumption values. Additionally, weather 
data was also generated via Meteonorm 
(Meteotest 2020) for the next eight decades, i.e. 
2030, 2040 etc. up to 2100. The three RCP 
climate scenarios 2.6, 4.5 and 8.5 (IPCC 2014) 
per decade were used for the simulations. 

To initiate these simulations, a Python script was 
written that automatically simulates six 
refurbishment scenarios and a total of 37 weather 
scenarios for 408,000 buildings of Berlin using 
SimStadt. After the simulation, the data was 
processed and stored automatically in a PostGIS 
database. 

The simulations can be repeated for other cities 
and municipalities in Germany. The libraries 
created can be used, only the 3D building models 
would need to be enriched with the information 
mentioned at the beginning and the climate data 
for the specific locations used in the simulation. 

Figure 2 Training strategy for artificial neural networks 
(ANN) with synthetic training data derived from 

simulations. 

 

Neural network as a surrogate model 

In order to determine the heating and domestic 
hot water demands for further buildings, the 
extent to which ANNs can serve as surrogate 
models for traditional simulations is being 
investigated. ANN are already used in various 
domains to efficiently substitute complex and 
time-consuming simulations (Sun und Wang 
2019), (Donnelly, Daneshkhah und Abolfathi 
2023). Due to the enormous amount of data 
generated by the simulations, ANNs can achieve 
good forecast quality and provide quick and 
effective predictions for heating and hot water 
demands for additional buildings.  

Trials with the data have shown that the 
prediction accuracy is higher when two different 
ANNs are trained for domestic hot water (DHW) 
and heating demands (HD). For this purpose, 
another Python script has been written, which 
accesses the simulation inputs and outputs in the 
database and chooses the relevant inputs and 
outputs for the training of the respective ANN. For 
the prediction of domestic hot water (DHW) far 
less input parameters are relevant than for the 
heating demand (HD). Table 1 shows the 
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different parameters significant for the training of 
the prediction models. 

Table 1: Input features for the distinct ANNs  

Input features for ANNs  HD DHW 

Year of construction  x x 

ALKIS code x x 

Primary and secondary usage 
zone areas 

x x 

Heated area x x 

Building type x x 

Footprint area x  

Window area x  

Total wall above ground outwall/ 
shared wall/roof area 

x  

Heat transfer coefficients for walls/ 
windows/ground/ roof/ceiling 

x  

Gross volume and heated volume x  

Storey number x  

Average storey height x  

Basement and/or attic heating x  

Basement ceiling height above 
ground 

x  

Surface area to volume ratio x  

Climate year and scenario x  

 

First, the data is prepared for the ANNs, and an 
exploratory data analysis is conducted. The script 
converts several non-numeric columns into a 
"category" data type. It also includes functions for 
displaying histograms and checking the normal 
distribution of the data. It analyses both numeric 
and categorical columns to provide insights into 
the distribution of the data. 

Moreover, a correlation map is created to provide 
insights into data relationships to choose the 
most relevant features to feed into the network 
models. However, more methods, such as 
regularization need to be explored as the analysis 
of correlation between categorical features 
cannot be assessed by computing correlation 
coefficients. Moreover, a method for splitting the 
data into training and test sets and for detecting 
and handling outliers in the dataset are provided. 
Together, these functions ensure that the data is 
ready for model fitting and further analysis. 

In the Python script two artificial neural network 
models are created using Keras (Google LLC 
2024), a high-level API for the implementation of 
neural networks. It enables model creation with 
customizable architecture and optimization 
settings. The script provides functions to build 
and train the neural network as well as functions 
for visualizing the training history and making 
predictions on unseen test data. These functions 
are crucial for the development and fine-tuning of 
neural network models for various prediction 
tasks. 

When implementing the neural network model, 
various hyperparameters concerning the model’s 
architecture and training need to be optimized. A 
grid search was performed using 5-fold cross-
validation with GridSearchCV from scikit-learn 
(scikit-learn 2024) to optimize hyperparameters 
such as batch size, epochs, neurons in the 
hidden layers, and learning rate. The optimal 
parameters found were a learning rate of 0.001 
and a batch size of 2048. The train/validation/test 
split was 0.7/0.15/0.15. 

A sequential model with two fully connected 
(dense) hidden layers was implemented, each 
with 128 neurons, which is effective for 
regression problems. The activation functions 
used were ReLU (rectified linear unit) for the 
hidden layers and a linear function for the output 
layer. 

The training objective was to predict hot water 
demand and heating demand accurately. The 
Mean Squared Error (MSE) was chosen as the 
loss function, minimized using the Adam 
optimizer. Training was terminated early if the 
validation loss plateaued, with a maximum of 256 
epochs and early stopping set at 16 epochs. The 
model achieved the following performance 
metrics: 

• Loss: Train 0.0350, Validation 0.0464, 
Test 0.0323 

• Mean Absolute Error (MAE): Train 
0.0385, Validation 0.0323, Test 0.0294 

• Mean Absolute Percentage Error 
(MAPE): 11.96% 

Figure 3 is a scatter plot illustrating the 
relationship between simulated and predicted 
yearly heating demands. The blue dots, which 
represent data points, are primarily clustered 
close to a straight line, indicating a strong 
correlation and suggesting that the model's 
predictions are highly accurate. However, there 
are a few outliers further away from this ideal fit 
line, highlighting areas where the model's 
predictions deviate from actual values. This 
indicates some level of uncertainty and 
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inaccuracy in the model's predictions, which must 
be critically evaluated to improve the overall 
quality and reliability of the results. 

 

Figure 3 Scatter Plot of Actual (Simulated) vs 

Predicted Yearly Heating Demand 

The training of the model takes about 0.0002% of 
the time of the simulations. Once the surrogate 
model is trained it can generate results in 
0.000003% compared to the simulations. The 
Mean Absolute Percentage Error (MAPE) of 12% 
is not an outstanding prediction accuracy but it is 
considered good when compared with other 
calculation methods used for existing buildings.  

The trained model can be saved and reloaded for 
further training or predictions on new datasets. 
For new data, input parameters need to be 
collected or calculated, with the outputs predicted 
by the model. The 3D geometry models, enriched 
with information from ALKIS, along with the 
gathered heat transfer coefficients and geometry 
parameters, support this process. Predictions for 
new data are stored georeferenced in the 
database.  

 

Website for new data 

Predicted heating and hot water demands will be 
published through a dedicated web application. 
All interested stakeholders will be able to access 
building specific prognosis data as well as 
underlying input data. Furthermore, users will 
have the ability to get data not only for single 
buildings but also use selection tools to extract 
data for the entirety of the buildings they are 
interested in. This will be useful e.g. for project 
developers who need to get an overview of the 
consumption in a development area. In the final 
implementation of the proposed web application 
users will even be able to submit their own 
building and consumption data for the already 
mentioned iterative refinement of the artificial 
neural networks. 

To achieve this a complete stack of web 
technologies needs to be implemented, see 

Figure 4. As a base a PostgreSQL (The 
PostgreSQL Global Development Group 2024) 
database management system with PostGIS 
(PostGIS PSC & OSGeo 2024) extension is 
setup. This can be achieved in several ways, one 
of which is to use a Docker Container of the 
3DCityDB (Yao, et al. 2018) developed by TU 
Munich. While not being the core of the database 
system, the 3DCityDB and its dependencies 
correlate strongly with the requirements for this 
project. These requirements include a robust 
relational database management system with the 
capability to work with GIS based data. By 
starting with an instance of the 3DCityDB it is also 
immediately possible to import 3D geometries of 
entire cities into the database using the 
Importer/Exporter tool by the same institution. 

The city of Berlin provides a 3D geometry model 
of the entire city in the CityGML format, that is 
freely available and is imported into the project 
database. Also imported were building input 
parameters from the feature list of the building 
database which originally comes from the ALKIS 
system and the mentioned libraries. 

Within the project’s GIS database all available 
building information is combined and an enriched 
CityGML model is exported. Only buildings and 
building parts that are considered to have heat 
energy consumption are exported. 

 

Figure 4 Data flow from source data to publication. 
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The same CityGML model is used for the afore 
mentioned simulation and training as well as for 
the visualization of 3D buildings within the web 
interface. For this the CityGML format is 
converted into Cesium 3D tiles, a proprietary data 
format that is supported by the freely available 
CesiumJS (Cesium GS, Inc. 2024) JavaScript 
library which is used as an engine for the map 
part of the web interface. While 3D models can 
be displayed it is also possible to get a 2D map. 
This map is hosted by Geoserver (Open Source 
Geospatial Foundation 2024) instance which 
serves a table of the central database with 
geometry information as a web map service 
(WMS). WMS can not only contain the 2D 
geometry information but also other attributes. 
Finally, a third way to access data is supplied with 
routes that are defined in the node.js backend of 
the described web application which can also 
query the central database and use predefined 
database functions to aggregate building 
information based on user requests and send 
them to the client’s web browser for displaying. 

The clients are running the presented web 
application by accessing the project website 
through a web browser, see Figure 5. When 
accessing they can view single building data by 
simply clicking individual building shapes on the 
2D default view. When users choose to use one 
of several selection tools, they can select building 
groups by giving a point and a radius, by drawing 
a polyline with a specified distance or by drawing 
a polygon. The displayed data switches then to 
an aggregated summary of all buildings selected. 
Interested users can download the detailed data 
of all buildings by downloading a csv file. 

The web interface gives stakeholders the 
opportunity to explore the results of our research 
for all buildings of Berlin. The predicted heat 
energy consumption is displayed together with 
the building energy efficiency class derived from 
these values. In addition, users can get 
aggregated results for city areas of their choice 
and use this data in their own projects. 

Depending on how much knowledge the user 
has, they will be able to choose between an 
“expert mode” for people with domain knowledge 
and a simplified “citizen mode”. Expert users are 
encouraged to also use  provided APIs to get to 
the data more efficiently. It is possible to use the 
aforementioned URL routes to access data. The 
development of a Python API has been started, 
which will provide a more intuitive interface to the 
web API. The Python API will be published. 

 

 

 

Figure 5 Web-interface including 3D building view. 
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Conclusion 

In conclusion, the integration of 3D geometries, 
open data, and artificial intelligence (AI) has 
enabled significant progress in predicting heating 
and hot water demands for buildings in Berlin. By 
developing sophisticated physics and usage 
libraries, coupled with extensive simulations and 
the implementation of artificial neural networks 
(ANNs), this study has established a robust 
framework for building-specific estimations. 

The iterative process undertaken facilitates faster 
predictions and establishes a scalable 
methodology applicable to city-wide or even 
nation-wide heating planning. Incorporating user-
centric features, such as a web interface for 
adjustments and corrections based on actual 
demands, ensures continuous improvement and 
adaptability to diverse climate scenarios and 
refurbishment plans. 

However, while the utilization of ANNs as 
surrogate models offers a high-speed alternative 
to traditional simulations, it does not achieve the 
highest accuracy, with a Mean Absolute 
Percentage Error (MAPE) of about 12%. This 
indicates that while the ANNs provide quick 
results, there is room for improvement in terms of 
accuracy. Future research should explore 
methods to enhance the precision of these 
models, such as by splitting the data into different 
building types or incorporating additional relevant 
features. 

The comprehensive Python scripts developed for 
data preparation, model creation, and evaluation 
contribute to the transparency and reproducibility 
of the methodology. The implementation of a 
dedicated web application further democratizes 
access to prognosis data, empowering 
stakeholders to explore and utilize building-
specific information for informed decision-
making. With features allowing for selection tools, 
data extraction, and APIs for expert users, the 
platform promotes collaboration and engagement 
among various stakeholders involved in city 
planning and development. 

Overall, this study emphasizes the importance of 
leveraging advanced technologies and open data 
initiatives to address challenges in communal 
heating planning. While the current approach 
provides a solid foundation, ongoing efforts to 
refine and enhance model accuracy will be 
crucial for maximizing the benefits of AI in energy 
optimization and climate mitigation. As cities 
worldwide strive towards decarbonization and 
resilience, the methodologies and tools 
developed in this research serve as valuable 
assets in shaping future strategies for 

sustainable and efficient energy practices in 
urban environments. 
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